NIST Cybersecurity Framework (CSF) New Version 2.0 Summary

Fig. 1. NIST CSF 2.0 Stepper, NIST, 2024.

#cyberresilience #cybersecurity #generativeai #cyberthreats #enterprisearchitecture #CIO #CTO #riskmanagement #bias #governance #RBAC #CybersecurityFramework #Cybersecurity #NISTCSF #RiskManagement #DigitalResilience #nist #nistframework #cyberawareness

The National Institute of Standards and Technology (NIST) has updated its widely used Cybersecurity Framework (CSF) — a free respected landmark guidance document for reducing cybersecurity risk. However, it’s important to note that most of the framework core has remained the same. Here are the core components the security community knows:

Govern (GV): Sets forth the strategic path and guidelines for managing cybersecurity risks, ensuring harmony with business goals and adherence to legal requirements and standards. This is the newest addition which was inferred before but is specifically illustrated to touch every aspect of the framework. It seeks to establish and monitor your company’s cybersecurity risk management strategy, expectations, and policy.

1.      Identify (ID): Entails cultivating a comprehensive organizational comprehension of managing cybersecurity risks to systems, assets, data, and capabilities.

2.      Protect (PR): Concentrates on deploying suitable measures to guarantee the provision of vital services.

3.      Detect (DE): Specifies the actions for recognizing the onset of a cybersecurity incident.

4.      Respond (RS): Outlines the actions to take in the event of a cybersecurity incident.

5.      Recover (RC): Focuses on restoring capabilities or services that were impaired due to a cybersecurity incident.

The new 2.0 edition is structured for all audiences, industry sectors, and organization types, from the smallest startups and nonprofits to the largest corporations and government departments — regardless of their level of cybersecurity preparedness and complexity.

Fig. 2. NIST CSF 2.0 Function Breakdown, NIST, 2024.

Here are some key updates:

Emphasis is placed on the framework’s expanded scope, extending beyond critical infrastructure to encompass all organizations. Importantly, it better incorporates and expands upon supply chain risk management processes. It also introduces a new focus on governance, highlighting cybersecurity as a critical enterprise risk with many dependencies. This is critically important with the emergence of artificial intelligence.

To make it easier for a wide variety of organizations to implement the CSF 2.0, NIST has developed quick-start guides customized for various audiences, along with case studies showcasing successful implementations, and a searchable catalog of references, all aimed at facilitating the adoption of CSF 2.0 by diverse organizations.

The CSF 2.0 is aligned with the National Cybersecurity Strategy and includes a suite of resources to adapt to evolving cybersecurity needs, emphasizing a comprehensive approach to managing cybersecurity risk. New adopters can benefit from implementation examples and quick-start guides tailored to specific user types, facilitating easier integration into their cybersecurity practices. The CSF 2.0 Reference Tool simplifies implementation, enabling users to access, search, and export core guidance data in user-friendly and machine-readable formats. A searchable catalog of references allows organizations to cross-reference their actions with the CSF, linking to over 50 other cybersecurity documents – facilitating comprehensive risk management. The Cybersecurity and Privacy Reference Tool (CPRT) contextualizes NIST resources with other popular references, facilitating communication across all levels of an organization.

NIST aims to continually enhance CSF resources based on community feedback, encouraging users to share their experiences to improve collective understanding and management of cybersecurity risk. The CSF’s international adoption is significant, with translations of previous versions into 13 languages. NIST expects CSF 2.0 to follow suit, further expanding its global reach. NIST’s collaboration with ISO/IEC aligns cybersecurity frameworks internationally, enabling organizations to utilize CSF functions in conjunction with ISO/IEC resources for comprehensive cybersecurity management.

Resources:

  1. NIST CSF 2.0 Fact Sheet.
  2. NIST CSF 2.0 PDF.
  3. NIST CSF 2.0 Reference Tool.
  4. NIST CSF 2.0 YouTube Breakdown.

About the Author:

Jeremy Swenson is a disruptive-thinking security entrepreneur, futurist/researcher, and senior management tech risk consultant. He is a frequent speaker, published writer, podcaster, and even does some pro bono consulting in these areas. He holds an MBA from St. Mary’s University of MN, an MSST (Master of Science in Security Technologies) degree from the University of Minnesota, and a BA in political science from the University of Wisconsin Eau Claire. He is an alum of the Federal Reserve Secure Payment Task Force, the Crystal, Robbinsdale and New Hope Citizens Police Academy, and the Minneapolis FBI Citizens Academy.

Lessons Learned From the Sony Hack

sony-hack-photo-3This article reviews the 2014 Sony hack from a strengths and weaknesses standpoint based on select parts of the SysAdmin, Audit, Network and Security (SANS) and National Institute of Standards in Technology (NIST) frameworks. Although an older hack, the lessons learned here are still relevant today.

Strengths – A Track Record of Innovation and Multilayered Information Security:
From early boom-boxes in the 1980s to the first portable disc player in the early 1990s.  To high-quality headphones, the first HD TVs, to high-quality speakers, a gaming system revolution called the PlayStation, and now a massive on-line gaming network, Sony has been creative and innovative.  This has made them one of the most respected and profitable Japanese companies to date.  Yet this success derived overconfidence in other areas including information security but they still have the potential and the money to be a security leader.   The managerial layering of Sony’s information security team was a good start even if their head count was too low.  One source stated, “Three information security analysts are overseen by three managers, three directors, one executive director and one senior vice president” (Hill, 2014).  Although contradictory, at least there was some oversight.

Failure 1 – Poor Culture and Lack of Leadership Support:
Sony’s leadership is on the record as not respecting the recommendations of either internal or external auditors.  A quote from an I.T. risk consultancy summarized it this way, “The Executive Director of Information Security talked auditors out of reporting failures related to Access Controls which would have resulted in Sony being SOX (Sarbanes-Oxley) non-compliant in 2005” (Risk3sixty LLC, 2014).  Things like this trickle down the layers of management and become a part of the company culture.  Specifically, low level whistle blowers were silenced even though their I.T. risk arguments were solid.  “Sony’s own employees complained that the network security was a joke. (Risk3sixty LLC, 2014)”.  When this happened Sony’s leaders failed to execute their fiduciary duty to the board, shareholders, and customers.  They did this so they did not look bad in the short term yet it cost the company more in the long term.

Failure 2 – Not Understanding Their Baseline:
The baseline is a measure that determines when you have the right amount of security and security process in relationship to your required business objectives and risk tolerance.  Being below the baseline means risk is too high and an attack or breach is likely.  This is why the baseline changes often and needs to be closely monitored.  For example, when you are producing a very politically controversial movie about an unruly world leader who has a history of making war threats against his political opponents, you should have a higher baseline to be on guard from hacktivists.  Sony overly focused on their cash generating core competencies and security was at most an afterthought.  According to one source, Sony Pictures had just 11 people assigned to a top-heavy information security team out of 7,000 total employees (Hill, 2014).  For a technology company that is way too few people working in security.  It’s not enough people to collect and intelligently review logs, patch software, pen test, red team, and be available for one or more war room type projects which are bound to come up – all things prudent security would require.

Understanding your I.T. risk baseline requires testing and measurement and this has to be based on some framework, SANS, NIST, or some of the others.  One former employee described Sony’s failure to comply with any framework as follows, “The real problem lies in the fact that there was no real investment in or real understanding of what information security is.  One issue made evident by the leak is that sensitive files on the Sony Pictures network were not encrypted internally or password-protected” (Hill, 2014).  Had they conformed to the SANS or NIST framework they would have been required to encrypt the data – see conclusion.

Failure 3 – Weak Password Policies:
Sony’s password policy was embarrassingly weak.  In fact, so weak you might think they were deliberately trying to help hackers.  “Employees kept plaintext passwords in Microsoft Word documents” (Franceschi-Bicchierai, 2014).  Even very small companies from the 1990s would have policies against that.  Moreover, one source confirmed that the word files were named with password in the file name (Risk3sixty LLC, 2014).  Once in the network, all a hacker has to do is search for a file with password in the name and they have it.

Failure 4 – Late Detecting the Hack and Data Exfiltration:
Right away the intruders easily walked into Sony’s internal network and began stealing unencrypted sensitive data with apparently no log alarms going off.  Sony had not followed data classification, retention, or governance plans – not even checkbox compliance.  If they did they would not have had all types of data mixed together.  One reporter described it this way, “Intruders got access to movie budgets, salary information, Social Security numbers, health care files, unreleased films, and more” (Hill, 2014).  Thus, their network segmentation here must have been weak or non-existent.  Health care data should not be near unreleased film files as they are totally different.  There is no business justification for this.  Segmenting and encrypting the data would have greatly reduced and delayed any data theft.

Conclusion:
sans-top-3-sony
nist-cyber-sec-framework-for-sony

References:
Baker, L., & Finkle, J.  “Sony PlayStation suffers massive data breach”.  Reuters.  Published 04/26/11.  Viewed 10/26/16.  http://www.reuters.com/article/2011/04/26/us-sonystoldendata-idUSTRE73P6WB20110426

Franceschi-Bicchierai, Lorenzo.  “Don’t believe the hype: Sony hack not ‘unprecedented,’ experts say.”  Mashable.  Published 12/08/14.  Viewed 10/20/16.  http://mashable.com/2014/12/08/sony-hack-unprecedented-undetectable/#359BD06aEkq6

Greene, Tim.  “SANS: 20 critical security controls you need to add.” Networked world.  Published 10/13/15.  Viewed 10/23/16.  http://www.networkworld.com/article/2992503/security/sans-20-critical-security-controls-you-need-to-add.html

Hill, Kashmir.  “Sony Pictures hack was a long time coming, say former employees”.  Published 12/04/14.  Viewed 10/20/16.  http://fusion.net/story/31469/sony-pictures-hack-was-a-long-time-coming-say-former-employees/

NIST.  “Framework for Improving Critical Infrastructure Cyber Security”.  Published 01/01/2016.  Viewed 10/23/16. https://www.nist.gov/sites/default/files/documents/cyberframework/Cybersecurity-Framework-for-FCSM-Jan-2016.pdf Risk3sixty LLC.

Risk3sixty. “The Sony Hack – Security Failures and Solutions.”  Published 12/19/14.  Viewed 10/20/16. http://www.risk3sixty.com/2014/12/19/the-sony-hack-security-failures-and-solutions/

Sanchez, Gabriel.  “Case Study: Critical Controls that Sony Should Have Implemented”.  SANS Institute Information security Reading Room.  Published 06/01/2015.  Viewed 10/20/16.  https://www.sans.org/reading-room/whitepapers/casestudies/case-study-critical-controls-sony-implemented-36022